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We apply path integrals to study nonequilibrium work theorems in the context of Brownian dynamics,
deriving in particular the equations of motion governing the most typical and most dominant trajectories. For
the analytically soluble cases of a moving harmonic potential and a harmonic oscillator with a time-dependent
natural frequency, we find such trajectories, evaluate the work-weighted propagators, and validate Jarzynski’s
equality.
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I. INTRODUCTION

As nonequilibrium work theorems describe exact relation-
ships between path averages and equilibrium thermodynamic
properties �1,2�, path integrals offer a natural framework for
their analysis. Previous studies of such theorems have in-
voked path integrals primarily with the intent of proving
their validity, e.g., by establishing an exact relation between
the path integration measures of processes taking place in
opposite directions �3,4�, or by invoking the Feynman-Kac
formula for the work-weighted density �5,6�. In either case,
the theorems can be proved without explicitly computing
some of the quantities that make path integrals most useful,
for example most likely trajectories and propagators.

Here we complement these efforts by using path integrals
to obtain trajectories and work-weighted propagators, and
explicitly evaluating these objects for analytically tractable
models. We derive the equations of motion governing two
important trajectories �Eq. �10��: the most typical, which has
the highest probability; and the most dominant, which con-
tributes most significantly to the Jarzynski average. Interest
in these trajectories stems in part from the observation that
when typical and dominant trajectories diverge, the Jarzynski
free energy estimate converges slowly �7�. Path integrals also
offer a convenient framework for the computation of work-
weighted propagators. We show that these propagators are
analytically soluble for harmonic oscillators with moving
equilibrium centers or changing frequencies. Collectively,
our results demonstrate that the utility of path integrals in the
context of nonequilibrium work theorems goes beyond sim-
ply proving their validity.

II. FORMALISM

We begin our analysis by formulating a path integral rep-
resentation of the propagator, which for simplicity we take to
be that of a one-dimensional overdamped Brownian particle
moving on a time-dependent potential U�x , t�. We assume a
constant diffusion coefficient D and measure energy in units
of kBT. Accordingly, the propagator p= p�x , t �x0 ,0� from the
point x0 at t=0 to the point x at time t satisfies the Smolu-
chowski equation �8�

�p

�t
= D

�

�x
�e−U�x,t� �

�x
�eU�x,t�p�� . �1�

As with the case where U is time independent �8�, we can
apply the substitution p=e−U�x,t�/2q, where q=q�x , t �x0 ,0�, to
write the equation in a Schrödinger-like form,

�q

�t
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�2q

�x2 + �V�x,t� +
1

2

�U

�t
�q . �2�

The “effective potential” V is given by

V�x,t� = D�U��x,t�
2

− �U��x,t�
2

�2� , �3�

with primes denoting partial derivatives with respect to x.
Expressing the propagator in the form of Eq. �2� allows us to
directly apply the Feynman-Kac formula �9� to write its so-
lution as a path integral,

q = �
x0,0

x,�

dx�t�exp	− �
0

�

dt� ẋ2

4D
− V −

1

2

�U

�t
�
 , �4�

where the density q=q�x ,� �x0 ,0� is at time t=�, V
�V(x�t� , t), and analogously for U. �In this notation, the
Wiener integral over all trajectories that start at x0 at t=0 and
end at x at t=� is obtained by setting V=U=0 in the above
equation; cf. �9�.� Returning to the original variable p
= p�x ,� �x0 ,0� and imposing the boundary condition
p�x ,0 �x0 ,0�=��x−x0�, we arrive at the desired path integral
representation of the propagator,

p = e−�U/2�
x0,0

x,�

dx�t�exp	− �
0

�

dt� ẋ2

4D
− V −

1

2

�U

�t
�
 ,

�5�

where �U�U�x ,��−U�x0 ,0�. Note that our approach differs
from previous treatments �3,4� in that no stochastic integrals
�e.g., Stratonovich or Itô� are used; through the Feynman-
Kac formalism, only ordinary time integrals and the usual
Wiener contribution appear in the path integral. This deriva-
tion thus avoids a common confusion associated with the
definition of the action due to such stochastic integrals �10�.

To make contact with Jarzynski’s equality, consider the
work-weighted propagator pw= pw�x ,� �x0 ,0�, defined as
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This propagator differs from Eq. �5� in that each trajectory in
the path integral is endowed with the additional weight
e−w�x�t��, where w�x�t��=�0

�dt��U /�t� is the work along the
trajectory x�t� �1�. The path average in Jarzynski’s equality,

e−w�=Z� /Z0, can be written in terms of pw as


e−w� =� dx0� dx
e−U�x0,0�

Z0
pw�x,��x0,0� , �7�

where Zt��dy e−U�y,t�. Thus, knowledge of the analytical
form of pw reduces the computation of the Jarzynski average

e−w� to simple quadrature.

A unique feature of path integrals is that they allow one to
extract noteworthy trajectories from a given path average,
such as Eq. �7�. This is done by first identifying the action
that dictates the trajectory probability and then optimizing
the desired functional �see �11,12� for a similar approach in
the context of time-independent potentials�. In the case of
Eq. �7�, the path average can be written as


e−w� =� dx0� dx�
x0,0

x,�

dx�t�
e−S�x�t��

Z0
e−w�x�t��, �8�

where the action functional is defined as

S�x�t�� �
U�x,�� + U�x0,0�

2
+ �

0

�

dt� ẋ2

4D
− V −

1

2

�U

�t
� .

�9�

Two trajectories of interest are the most typical �xT�t��, which
minimizes the action S alone, and the most dominant �xD�t��,
which minimizes the combined action-work functional S
+w. Carrying out the functional optimization of S and S+w,
we obtain the Euler-Lagrange equations

ẍ�t�
2D

= −
�

�x
�V �

1

2

�U

�t
� , �10�

subject to the boundary conditions ẋ�0�=D��U /�x�t=0 and
ẋ���=−D��U /�x�t=�. Notably, in contrast to the usual case
where the end points x0 and x are fixed, these boundary con-
ditions allow for the variation of x0 and x to minimize the
action. The sign of �U /�t in Eq. �10� is positive for the most
typical and negative for the most dominant trajectories,
whereas the boundary conditions are the same for both types.

The path integral formulation of the work-weighted
propagator �Eq. �6�� and the Euler-Lagrange equations for
the most typical and most dominant trajectories �Eq. �10��
are the central objects of interest in this paper.

III. ANALYTIC MODELS

We now demonstrate the above results on two analytically
tractable problems.

A. Moving oscillator, U(x , t)=k(x−vt)2 Õ2

Here the spring constant k�0 is time independent, and
the center of the harmonic potential moves at constant veloc-
ity v. We first compute the most typical and most dominant
trajectories. The Euler-Lagrange equations above become

ẍ = �Dk�2�x − vt� � Dkv , �11�

with boundary conditions ẋ�0�=Dkx�0� and ẋ���=−Dk�x���
−vt�. The sign convention is the same as in Eq. �10�. Solving
these elementary differential equations, we find

xT�t� = vt −
v

Dk
�1 − e−Dkt� , �12�

xD�t� = vt +
v

Dk
�1 − e−Dk��−t�� . �13�

Thus, in the allotted time interval 0� t��, the most typical
trajectory starts out aligned with the center of the well and
lags behind at later times, while the most dominant one starts
ahead of the center in the beginning, but falls back at the
final time � �see Fig. 1�.

We now proceed to the computation of the work-weighted
propagator. For the moving harmonic potential, Eq. �6� gives
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FIG. 1. �Color online� Illustration of Eqs. �12� and �13�. The
most typical �blue, bottom two curves� and most dominant �red, top
two� trajectories for two different velocities are plotted with respect
to the center of the harmonic well, vt �dashed�. The parameters are
v�=D=k=1.
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pw = e−�U/2+Dk�/2�
x0,0

x,�

dx�t�e	− �
0

�

dt� ẋ2

4D
+

Dk2

4
�x − vt�2

−
vk

2
�x − vt��
 . �14�

This path integral can be simplified with the change of vari-
ables z�t�=x�t�−vt− v

Dk , which does not change the integra-
tion measure. This gives

pw = e−�U/2+Dk�/2−�v/2D��x−x0−v��G�z,��z0,0� , �15�

where z0=x0− v
Dk , z=x−v�− v

Dk , and G is the Gaussian path
integral

G�z,��z0,0� = �
z0,0

z,�

dz�t�exp	− �
0

�

dt� ż2

4D
+

Dk2

4
z2�
 .

�16�

This is the propagator of a Brownian particle subject to a
harmonic, time-independent source or sink term. Its result is
well known �cf. �9��, namely,

G�z,��z0,0� =

exp�−
k

4

�z2 + z0
2�cosh�Dk�� − 2zz0

sinh�Dk��
�

�4�

k
sinh�Dk��

.

�17�

Finally, using this result in Eq. �15� and expressing the final
formula in terms of the convenient variables z and z0 �see
above�, we obtain

pw =

exp�−
k

2

�z − z0e−Dk��2

1 − e−2Dk� −
v
D

�z − z0��
�2�

k
�1 − e−2Dk��

. �18�

In accordance with expectations, when v=0, this expression
reduces to the well-known formula for the propagator of a
Brownian particle in a stationary harmonic potential
�Ornstein-Uhlenbeck process; see e.g., �13��, as in this case
the work is identically zero and we must have p= pw. Addi-
tionally, using this propagator in Eq. �7� and performing the
two Gaussian integrals leads to 
e−w�=1, which confirms the
Jarzynski equality prediction.

We leave this section with a comparison of our results
with those of Mazonka and Jarzynski �14�. These authors
directly solved a Fokker-Planck equation for the joint work-
position density f�y ,w �y0�, where in their study y�t�=x�t�
−vt. Integrating over the work, the marginal density of y�t�
was found to be Gaussian with a mean moving according to
a simple expression �Eq. �14a� of that reference�. Inciden-
tally, upon Boltzmann-averaging over the initial condition y0,
this reduces to our Eq. �12�. We note, however, that this
coincidence between average position and most typical tra-
jectory is not to be expected in general, and is likely to be a
peculiarity of harmonic problems. Lastly, we note that Eq.
�18� can in principle be obtained from the full expression for

f�y ,w �y0� in the appendix of Ref. �14� by integrating out w
from f with weight e−w.

B. Varying spring constant, U(x , t)=k(t)x2 Õ2

We assume k�t��0. This problem has been used in the
numerical examples of Ref. �15�. Perhaps unsurprisingly, the
most typical and most dominant trajectories are found to be
xT�t�=xD�t�=0 for any k�t�. This simply reflects the parity
symmetry of the problem, and indicates that other properties,
such as the width of the instantaneous position distribution,
are responsible for the observed convergence properties of
the Jarzynski average �15�.

A less trivial aspect of this problem is its work-weighted
propagator. From Eq. �6�, we obtain

pw = exp�− �U/2 +
D

2
�

0

�

dt k��
x0,0

x,�

dx�t�exp	− �
0

�

dt� ẋ2

4D

+
k̇ + Dk2

4
x2�
 , �19�

where k=k�t�. Due to the fortuitous combination k̇+Dk2 in
the effective harmonic potential, this propagator can be com-
puted in closed analytical form for arbitrary k�t�. To proceed,
we factor out the x0 ,x dependence from the path integral
with the usual substitution for harmonic potentials �16�,
x�t�= x̄�t�+y�t�. The trajectory x̄�t� is an extremum of the
action in Eq. �19�, satisfying the Euler-Lagrange equation

ẍ̄ = �Dk̇ + D2k2�x̄ , �20�

with boundary conditions x̄�0�=x0 and x̄���=x, i.e. y�0�
=y���=0. After integration by parts and changing the path
integration variable from x�t� to y�t�, we get

pw = exp�−
�U

2
+

D

2
�

0

�

dt k�e−�x̄ẋ̄/4D�0
�
G��� , �21�

where we have defined the x0- and x-independent quantity

G��� = �
0,0

0,�

dy�t�exp	− �
0

�

dt� ẏ2

4D
+

k̇ + Dk2

4
y2�
 .

�22�

This Gaussian path integral can be formally evaluated in dif-
ferent ways. Using the Gelfand-Yaglom method �9�, we find
G���=1 /�4�D����, where ��t� satisfies the same differen-
tial equation as x̄�t� �Eq. �20��, with boundary conditions
��0�=0 and �̇�0�=1.

Thus, we have reduced the evaluation of the path integral
in Eq. �19� to the solution of a single differential equation
�Eq. �20��. There are two independent solutions to this equa-
tion, namely,

	1�t� = exp�D�
0

t

ds k� , �23�
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	2�t� = exp�D�
0

t

ds k�	�
0

t

du exp�− 2D�
0

u

ds k�
 .

�24�

The desired quantities x̄�t� and ��t� are obtained by a linear
combination of 	1 and 	2 with the appropriate boundary
conditions. Here we omit the details of this computation and
simply quote the final result for pw, obtained by plugging
these solutions into Eq. �21�:

pw =� 	1

4�D	2
exp�−

1

4D
	�2Dk��� +

1

	1	2
�x2 − �2Dk�0�

−
	1

	2
�x0

2 −
2

	2
xx0
� , �25�

where for brevity of notation we have defined 	1�	1��� and
	2�	2���. Thus, for any k�t�, the work-weighted propagator
is a Gaussian function whose time-dependent coefficients
can be found via quadrature, i.e., via Eqs. �23� and �24�. As
in the previous problem, one can check that this result re-
duces to the propagator for a one-dimensional Ornstein-
Uhlenbeck process when k�t� is a constant. Furthermore,
upon using this expression for pw in Eq. �7� and carrying out
the two Gaussian integrals, massive cancellation of terms
ensues, leaving 
e−w�=�k�0� /k���, which also validates the
Jarzynski equality prediction.

IV. FORWARD-REVERSE PROCESSES

Lastly, we consider work-weighted propagators and domi-
nant and typical trajectories in the context of forward and
reverse processes, in the sense of Crooks �2�. For a given
time-dependent energy function U�x , t� defined between
times t=0 and �, let us arbitrarily call the dynamics under the
potential U�x , t� the forward process, and the dynamics under
the time-reversed potential U�x ,�− t� the reverse process. By
definition, the forward propagator pF� pF�x ,� �x0 ,0� is given
by Eq. �5�, while the reverse propagator pR�x ,� �x0 ,0� is
given by the same expression with the replacement U�x , t�
→U�x ,�− t�. Now consider the quantity pR� pR�x0 ,� �x ,0�,
i.e., the reverse propagator with inverted initial and final con-
ditions, x and x0, respectively. After the time-reversal change
of variables s=�− t and y�s�=x��−s� in the path integral, we
obtain

pR = e�U/2�
x0,0

x,�

dy�t�exp	− �
0

�

dt� ẏ2

4D
− V +

1

2

�U

�t
�
 ,

�26�

where �U is defined as before. We thus see that pR differs
from pF simply in the signs of �U and �U /�t.

Two interesting consequences are of immediate notice.
First, the following relation is verified:

e−U�x0,0�pw
F�x,��x0,0� = e−U�x,��pR�x0,��x,0� , �27�

where the forward work-weighted propagator pw
F is given by

Eq. �6�. When U is time independent, this result reduces to
detailed balance, i.e., e−U�x0�p�x ,� �x0 ,0�=e−U�x�p�x0 ,� �x ,0�,
as in this case w=0 and the process directions are immate-
rial. This identity can thus be seen as a version of detailed
balance in the context of time-dependent potentials, and es-
tablishes that the computation of pw is no easier or harder
than that of p. In contrast, when pw is averaged over the
initial Boltzmann distribution �by dividing the above equa-
tion by Z0 and integrating over x0�, the resultant density has
the generic closed-form analytical solution e−U�x,�� /Z0 �5,15�.
Further integration over x leads to Jarzynski’s equality.

Second, as per Eq. �10� and the definition of the reverse
process above, the time reversals of the typical and dominant
trajectories in the reverse process satisfy precisely the same
Euler-Lagrange equations and boundary conditions of the
dominant and typical trajectories in the forward process, re-
spectively. For example, observing Fig. 1 from right to left,
the typical trajectories become the dominant ones, and vice
versa. Our results thus provide means to explicitly compute
and illustrate the conclusions of Ref. �7�.

V. CONCLUSIONS

In summary, we have offered a detailed path integral
study of the Jarzynski equality. This path integral approach
allowed us to derive exact results for work-weighted propa-
gators, as well as analytical expressions for typical and
dominant trajectories in model problems. As argued above,
such propagators are generally not known in closed analyti-
cal form, and hence one needs to resort to models such as the
present ones for additional insight. Our Euler-Lagrange
equations of motion make it possible to investigate quantita-
tive properties of typical and dominant trajectories formerly
discussed at a qualitative level. A natural application of such
equations can be found in the context of single-molecule
“pulling” experiments, where it can reveal the typical and
dominant rupture events inherent to these processes �6�.
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